Enhancing Surrogate-Based Optimization Through Parallelization

CHF 229.15
Auf Lager
SKU
EIU8PE60N8O
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.
Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.
Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.

Presents an in-depth analysis on parallel Surrogate-Based Optimization (SBO) algorithms Introduces a novel benchmarking framework for the fair comparison of parallel SBO algorithms Focuses on the application of parallel SBO

Inhalt
Introduction.- Background.- Methods/Contributions.- Application.- Final Evaluation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031306082
    • Genre Technology Encyclopedias
    • Auflage 2023
    • Lesemotiv Verstehen
    • Anzahl Seiten 128
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T13mm
    • Jahr 2023
    • EAN 9783031306082
    • Format Fester Einband
    • ISBN 3031306082
    • Veröffentlichung 30.05.2023
    • Titel Enhancing Surrogate-Based Optimization Through Parallelization
    • Autor Frederik Rehbach
    • Untertitel Studies in Computational Intelligence 1099
    • Gewicht 389g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470