Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Epistasis
Details
This volume explores methods and protocols for detecting epistasis from genetic data. Chapters provide methods and protocols demonstrating approaches to identify epistasis, genetic epistasis testing, genome-wide epistatic SNP networks, epistasis detection through machine learning, and complex interaction analysis using trigenic synthetic genetic array (-SGA). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.
Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
"Simulating Evolution in Asexual Populations with Epistasis is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Includes cutting-edge methods and protocols Provides step-by-step detail essential for reproducible results Contains key notes and implementation advice from the experts
Inhalt
Mass-based Protein Phylogenetic Approach to Identify Epistasis.- SNPInt-GPU: Tool for epistasis testing with multiple methods and GPU acceleration.- Epistasis-based Feature Selection Algorithm.- W-test for Genetic Epistasis Testing.- The Combined Analysis of Pleiotropy and Epistasis (CAPE).- Two-Stage Testing for Epistasis: Screening and Veri_cation.- Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.- Phenotype Prediction under Epistasis.- Simulating Evolution in Asexual Populations with Epistasis.- Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.- Brief survey on Machine Learning in Epistasis.- First-Order Correction of Statistical Significance for Screening Two-Way Epistatic Interactions.- Gene-Environment Interaction: AVariable Selection Perspective.- Using C-JAMP to Investigate Epistasis and Pleiotropy.- Identifying the Significant Change of Gene Expression in Genomic Series Data.- Analyzing High-Order Epistasis from Genotype-phenotype Maps Using 'Epistasis' Package.- Deep Neural Networks for Epistatic Sequences Analysis.- Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.- A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.- Epistasis Detection Based on Epi-GTBN.- Epistasis Analysis: Classification through Machine Learning Methods.- Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.- Trigenic Synthetic Genetic Array (-SGA) Technique for Complex Interaction Analysis.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Editor Ka-Chun Wong
- Titel Epistasis
- Veröffentlichung 18.03.2021
- ISBN 1071609467
- Format Fester Einband
- EAN 9781071609460
- Jahr 2021
- Größe H260mm x B183mm x T28mm
- Untertitel Methods and Protocols
- Gewicht 969g
- Auflage 1st edition 2021
- Genre Medizin
- Lesemotiv Verstehen
- Anzahl Seiten 412
- Herausgeber Springer US
- GTIN 09781071609460