Epistasis

CHF 177.80
Auf Lager
SKU
GOTEKHFCBF0
Stock 1 Verfügbar
Geliefert zwischen Do., 13.11.2025 und Fr., 14.11.2025

Details

This volume explores methods and protocols for detecting epistasis from genetic data. Chapters provide methods and protocols demonstrating approaches to identify epistasis, genetic epistasis testing, genome-wide epistatic SNP networks, epistasis detection through machine learning, and complex interaction analysis using trigenic synthetic genetic array (-SGA). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.

Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.

"Simulating Evolution in Asexual Populations with Epistasis is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Includes cutting-edge methods and protocols Provides step-by-step detail essential for reproducible results Contains key notes and implementation advice from the experts

Inhalt
Mass-based Protein Phylogenetic Approach to Identify Epistasis.- SNPInt-GPU: Tool for epistasis testing with multiple methods and GPU acceleration.- Epistasis-based Feature Selection Algorithm.- W-test for Genetic Epistasis Testing.- The Combined Analysis of Pleiotropy and Epistasis (CAPE).- Two-Stage Testing for Epistasis: Screening and Veri_cation.- Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.- Phenotype Prediction under Epistasis.- Simulating Evolution in Asexual Populations with Epistasis.- Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.- Brief survey on Machine Learning in Epistasis.- First-Order Correction of Statistical Significance for Screening Two-Way Epistatic Interactions.- Gene-Environment Interaction: AVariable Selection Perspective.- Using C-JAMP to Investigate Epistasis and Pleiotropy.- Identifying the Significant Change of Gene Expression in Genomic Series Data.- Analyzing High-Order Epistasis from Genotype-phenotype Maps Using 'Epistasis' Package.- Deep Neural Networks for Epistatic Sequences Analysis.- Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.- A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.- Epistasis Detection Based on Epi-GTBN.- Epistasis Analysis: Classification through Machine Learning Methods.- Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.- Trigenic Synthetic Genetic Array (-SGA) Technique for Complex Interaction Analysis.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781071609491
    • Auflage 1st edition 2021
    • Editor Ka-Chun Wong
    • Sprache Englisch
    • Genre Medical Books
    • Größe H254mm x B178mm x T23mm
    • Jahr 2022
    • EAN 9781071609491
    • Format Kartonierter Einband
    • ISBN 1071609491
    • Veröffentlichung 19.03.2022
    • Titel Epistasis
    • Untertitel Methods and Protocols
    • Gewicht 771g
    • Herausgeber Springer US
    • Anzahl Seiten 412
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470