Equivariant Lyapunof Center Theorem
Details
We prove the existence of small amplitude quasi- periodic solutions of some nonlinear Hamiltonian partial differential equations, exploiting the symmetries of the systems. Our theorem is obtained requiring a Dyophantine type nonresonance condition, a standard nondegeneracy condition and assuming a regularizing property of the nonlinearity. The proof is based on the Lyapunov-Schmidt reduction method, a suitable analysis of small denominators and on the standard implicit function theorem. We apply our result to the nonlinear beam equation with spatial periodic boundary conditions, to a beam vibrating in a two dimensional space with Dirichlet boundary conditions and to the nonlinear wave equation with spatial periodic boundary conditions.
Autorentext
Cristina Bardelle completed her Ph.D. in Mathematics in 2007 at the Università degli Studi in Milano, under the supervision of Prof. Dario Bambusi. Her present research interests involve mathematics education, focusing on the role of language and visual reasoning in the teaching and learning of mathematics.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Gewicht 143g
- Untertitel for Partial Differential Equations
- Autor Cristina Bardelle
- Titel Equivariant Lyapunof Center Theorem
- Veröffentlichung 21.09.2010
- ISBN 3843354006
- Format Kartonierter Einband
- EAN 9783843354004
- Jahr 2010
- Größe H220mm x B150mm x T6mm
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 84
- GTIN 09783843354004