Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Ernst Equation and Riemann Surfaces
Details
In this volume the solutions to the Ernst equation associated to Riemann surfaces are studied in detail, and physical and mathematical aspects of this class are discussed both analytically and numerically. Exact solutions to Einstein`s equations have been useful for the understanding of general relativity in many respects. They have led to physical concepts as black holes and event horizons and helped to visualize interesting features of the theory. In addition they have been used to test the quality of various approximation methods and numerical codes. The most powerful solution generation methods are due to the theory of Integrable Systems. In the case of axisymmetric stationary spacetimes the Einstein equations are equivalent to the completely integrable Ernst equation.
Inhalt
Introduction.- The Ernst Equation.- Riemann-Hilbert Problem and Fay's Identity.- Analyticity Properties and Limiting Cases.- Boundary Value Problems and Solutions.- Hyperelliptic Theta Functions and Spectral Methods.- Physical Properties.- Open Problems.- Riemann Surfaces and Theta Functions.- Ernst Equation and Twister Theory.- Index.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 264
- Herausgeber Springer
- Gewicht 406g
- Untertitel Analytical and Numerical Methods
- Autor Christian Klein , Olaf Richter
- Titel Ernst Equation and Riemann Surfaces
- Veröffentlichung 22.10.2010
- ISBN 3642066771
- Format Kartonierter Einband
- EAN 9783642066771
- Jahr 2010
- Größe H235mm x B155mm x T15mm
- Lesemotiv Verstehen
- GTIN 09783642066771