Euclidean Domain
CHF 49.20
Auf Lager
SKU
F57P879IULU
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025
Details
In mathematics, more specifically in abstract algebra and ring theory, a Euclidean domain is a ring that can be endowed with a certain structure namely a Euclidean function, to be described in detail below which allows a suitable generalization of the Euclidean algorithm. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them (Bézout identity). Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the Fundamental Theorem of Arithmetic: every Euclidean domain is a unique factorization domain. It is important to compare the class of Euclidean domains with the larger class of principal ideal domains (PIDs).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130269296
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Genre Mathematik
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9786130269296
- Format Fachbuch
- ISBN 978-613-0-26929-6
- Titel Euclidean Domain
- Untertitel Abstract algebra, Ring theory, Ring (mathematics), Euclidean algorithm, Integer, Greatest common divisor, Bézout's identity, Fundamental theorem of arithmetic, Unique factorization domain
- Gewicht 171g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 104
Bewertungen
Schreiben Sie eine Bewertung