Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolution Equations of von Karman Type
Details
In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail.
The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations.
Includes supplementary material: sn.pub/extras
Inhalt
Operators and Spaces.- Weak Solutions.- Strong Solutions, m + k _ 4.- Semi-Strong Solutions, m = 2, k = 1.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319209968
- Sprache Englisch
- Auflage 1st edition 2015
- Größe H235mm x B155mm x T9mm
- Jahr 2015
- EAN 9783319209968
- Format Kartonierter Einband
- ISBN 3319209965
- Veröffentlichung 22.10.2015
- Titel Evolution Equations of von Karman Type
- Autor Albert Milani , Pascal Cherrier
- Untertitel Lecture Notes of the Unione Matematica Italiana 17
- Gewicht 254g
- Herausgeber Springer International Publishing
- Anzahl Seiten 160
- Lesemotiv Verstehen
- Genre Mathematik