Evolutionary Decision Trees in Large-Scale Data Mining

CHF 177.10
Auf Lager
SKU
TODAJ5DME4E
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.

Sums up the authors research conducted over the last 15 years on the evolutionary induction of decision trees Discusses some basic elements from three domains are discussed, all of which are necessary to follow the proposed approach: evolutionary computations, decision trees, and parallel and distributed computing Presents in detail an evolutionary approach to the induction of decision trees

Inhalt
Evolutionary computation.- Decision trees in data mining.- Parallel and distributed computation.- Global induction of univariate trees.- Oblique and mixed decision trees.- Cost-sensitive tree induction.- Multi-test decision trees for gene expression data.- Parallel computations for evolutionary induction.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030218508
    • Auflage 1st edition 2019
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T17mm
    • Jahr 2019
    • EAN 9783030218508
    • Format Fester Einband
    • ISBN 3030218503
    • Veröffentlichung 18.06.2019
    • Titel Evolutionary Decision Trees in Large-Scale Data Mining
    • Autor Marek Kretowski
    • Untertitel Studies in Big Data 59
    • Gewicht 459g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 192

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470