Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Evolutionary Multiobjective Optimization with Gaussian Process Models
Details
This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.
Autorentext
Miha Mlakar finished his Ph.D. in Information and Communication Technologies from the Joef Stefan International Postgraduate School in Ljubljana, Slovenia.He is currently working as a Postdoctoral Associate at Joef Stefan Insitute, focusing on evolutionary algorithms, optimization, machine learning, data science and industrial applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659759352
- Genre Maths
- Anzahl Seiten 116
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T8mm
- Jahr 2015
- EAN 9783659759352
- Format Kartonierter Einband
- ISBN 365975935X
- Veröffentlichung 20.07.2015
- Titel Evolutionary Multiobjective Optimization with Gaussian Process Models
- Autor Miha Mlakar
- Gewicht 191g
- Sprache Englisch