Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Exciton-Plasmon interactions in metal-semiconductor nanostructures
Details
Over the past decades, the use of surface plasmons (SPs) of noble metal nano-particles to control light emission on the nanometer scale has increased rapidly, due to their field enhancement and other special properties. With this boom in physics, chemistry, biomedical science and engineering has also come a rise in the need for understanding the dynamics of light emission in these systems. Traditional photoluminescence spectrum only gives limited information on quantum dot emission under SP resonances. This book, therefore, uses modern Time-Correlated Single Photon Counting technique and other approaches to study SPs in nanoparticle arrays, and their effects on semiconductor quantum dot emission. The observed SP resonances in metal nano-disc arrays enhances the CdSe/ZnS (core/shell) quantum dot emission in a way that is dependent on dipole emission angle and photon polarization, which is fully explained by quantum electrodynamics. This fundamental finding could be used to control the light emission in plasmonic device applications.
Autorentext
Dr. Yikuan Wang earned a Ph.D. degree in Physics at the University of Massachusetts Amherst in 2009. He is interested in plasmonics, single molecule spectroscopy, computational physics, and materials science for biomedical applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659166198
- Auflage Aufl.
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H7mm x B220mm x T150mm
- Jahr 2012
- EAN 9783659166198
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-16619-8
- Titel Exciton-Plasmon interactions in metal-semiconductor nanostructures
- Autor Yikuan Wang
- Untertitel Potentials of Controlling Quantum Dot Emissions
- Gewicht 191g
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 116