Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Explorations in Monte Carlo Methods
Details
Monte Carlo methods are among the most used and useful computational tools available, providing efficient and practical algorithms to solve a wide range of scientific and engineering problems. This book provides a hands-on approach to learning this subject.
Hands-on approach is used via realistic problems demonstrated with examples and numerical simulations in Python Applications covered: optimization, finance, statistical mechanics, birth and death processes, and gambling systems Includes supplementary material: sn.pub/extras
Autorentext
Ronald Shonkwiler is also publishing Mathematical Biology: An Introduction with Maple and Matlab, that will will be available in 2008. He is professor emeritus at Georgia Institute of Technology School of Mathematics. He received his PhD in 1970. His areas of expertise include: stochastic processes, optimization, computer simulation, Monte Carlo numerical methods, mathematical biology, and reproducing Kernel Hilbert spaces.
Franklin Mendevil is a professor at Acadia University in Nova Scotia. He received his PhD in 1996 at Georgia Institute of Technology. He has co-authored numerous papers and publications, several of which were with Dr. Shonkwiler.
Inhalt
to Monte Carlo Methods.- Some Probability Distributions and Their Uses.- Markov Chain Monte Carlo.- Optimization by Monte Carlo Methods.- Random Walks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781489983794
- Sprache Englisch
- Auflage 2009
- Größe H235mm x B13mm x T155mm
- Jahr 2014
- EAN 9781489983794
- Format Kartonierter Einband
- ISBN 978-1-4899-8379-4
- Titel Explorations in Monte Carlo Methods
- Autor Ronald W. Shonkwiler , Franklin Mendivil
- Untertitel Undergraduate Texts in Mathematics
- Gewicht 397g
- Herausgeber Springer New York
- Anzahl Seiten 243
- Lesemotiv Verstehen
- Genre Informatik