Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Exploring time series of moderate resolution vegetation index
Details
Image classification is one of the most widely used techniques on remote sensing data. Whereas the actual supervised classification of satellite image is a highly automated process, assembling the training data needed for such classification is anything but automatic. Our research has focused on developing a method to extract the training samples for some classes automatically from the data itself by analyzing the discrete fourier transform of the temporal signatures of every class. The multi- temporal data allows us to characterize objects based on their dynamic processes rather than static properties like color,shape, etc and this is being successfully demonstrated in this research. Other utilities of the time series data like derivation of a season calendar, mapping of cropping practices and finding single and double cropping regions have been demonstrated. The solution to the problem of finding single and multi crop regions enables us to implement policy decisions like Special Economic Zone (SEZ) Act, 2002 which prohibits the use of multi cropping lands for setting up special economic zones.
Autorentext
Sudhir Gupta, MS by Research in Computer Science Engineering; Studied Computer Science Engineering at IIIT, Hyderabad, India. Faculty at the LNMIIT, Jaipur, India.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639299403
- Genre Technik
- Sprache Englisch
- Anzahl Seiten 76
- Herausgeber VDM Verlag
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9783639299403
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-29940-3
- Titel Exploring time series of moderate resolution vegetation index
- Autor Sudhir Gupta
- Untertitel Novel methods
- Gewicht 130g