Extensional Constructs in Intensional Type Theory

CHF 190.95
Auf Lager
SKU
8ETBSAGEH3P
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Extensional Constructs in Intensional Type Theory presents a novel approach to the treatment of equality in Martin-Loef type theory (a basis for important work in mechanised mathematics and program verification). Martin Hofmann attempts to reconcile the two different ways that type theories deal with identity types. The book will be of interest particularly to researchers with mainly theoretical interests and implementors of type theory based proof assistants, and also fourth year undergraduates who will find it useful as part of an advanced course on type theory.

Autorentext
Prof. Dr. Martin Hofmann, lehrt an der Ludwig-Maximilians-Universität München, Institut für Informatik, Theoretische Informatik, Germany.

Klappentext

Extensional Constructs in Intensional Type Theory presents a novel approach to the treatment of equality in Martin-Loef type theory (a basis for important work in mechanised mathematics and program verification). Martin Hofmann attempts to reconcile the two different ways that type theories deal with identity types. The book will be of interest particularly to researchers with mainly theoretical interests and implementors of type theory based proof assistants, and also fourth year undergraduates who will find it useful as part of an advanced course on type theory.


Inhalt

  1. Introduction.- 1.1 Definitional and propositional equality.- 1.2 Extensional constructs.- 1.3 Method.- 1.4 Applications.- 1.5 Overview.- 2. Syntax and semantics of dependent types.- 2.1 Syntax for a core calculus.- 2.2 High-level syntax.- 2.3 Further type formers.- 2.4 Abstract semantics of type theory.- 2.5 Interpreting the syntax.- 2.6 Discussion and related work.- 3. Syntactic properties of propositional equality.- 3.1 Intensional type theory.- 3.2 Extensional type theory.- 3.3 Related work.- 4. Proof irrelevance and subset types.- 4.1 The refinement approach.- 4.2 The deliverables approach.- 4.3 The deliverables model.- 4.4 Model checking with Lego.- 4.5 Type formers in the model D.- 4.6 Subset types.- 4.7 Reinterpretation of the equality judgement.- 4.8 Related work.- 5. Extensionality and quotient types.- 5.1 The setoid model.- 5.2 The groupoid model.- 5.3 A dependent setoid model.- 5.4 Discussion and related work.- 6. Applications.- 6.1 Tarski's fixpoint theorem.- 6.2 Streams in type theory.- 6.3 Category theory in type theory.- 6.4 Encoding of the coproduct type.- 6.5 Some basic constructions with quotient types.- 6.6 ? is co-continuousintensionally.- 7. Conclusions and further work.- A.1 Extensionality axioms.- A.2 Quotient types.- A.3 Further axioms.- Appendix B. Syntax.- Appendix C. A glossary of type theories.- Appendix D. Index of symbols.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447112433
    • Sprache Englisch
    • Größe H235mm x B155mm x T13mm
    • Jahr 2011
    • EAN 9781447112433
    • Format Kartonierter Einband
    • ISBN 1447112431
    • Veröffentlichung 22.09.2011
    • Titel Extensional Constructs in Intensional Type Theory
    • Autor Martin Hofmann
    • Untertitel Distinguished Dissertations
    • Gewicht 359g
    • Herausgeber Springer
    • Anzahl Seiten 232
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470