Extensions of Moser-Bangert Theory

CHF 166.35
Auf Lager
SKU
MT49BJKAVVK
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This monograph presents extensions of the MoserBangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an AllenCahn PDE model of phase transitions.

After recalling the relevant MoserBangert results, Extensions of MoserBangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained.

The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.


Outgrowth of MoserBangert's work on solutions of a family of nonlinear elliptic partial differential equations Develops and examines the rich structure of the set of solutions of the simpler model case (PDE) Minimization arguments are an important tool in the investigation Unique book in the literature Includes supplementary material: sn.pub/extras

Klappentext

With the goal of establishing a version for partial differential equations (PDEs) of the AubryMather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of the MoserBangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an AllenCahn PDE model of phase transitions.

After recalling the relevant MoserBangert results, Extensions of MoserBangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained.

Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.


Inhalt

1 Introduction.- Part I: Basic Solutions.- 2 Function Spaces and the First Renormalized Functional.- 3 The Simplest Heteroclinics.- 4 Heteroclinics in x1 and x2.- 5 More Basic Solutions.- Part II: Shadowing Results.- 6 The Simplest Cases.- 7 The Proof of Theorem 6.8.- 8 k-Transition Solutions for k > 2.- 9 Monotone 2-Transition Solutions.- 10 Monotone Multitransition Solutions.- 11 A Mixed Case.- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2}.- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE).- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780817681166
    • Sprache Englisch
    • Auflage 2011 edition
    • Größe H245mm x B163mm x T18mm
    • Jahr 2011
    • EAN 9780817681166
    • Format Fester Einband
    • ISBN 978-0-8176-8116-6
    • Veröffentlichung 24.06.2011
    • Titel Extensions of Moser-Bangert Theory
    • Autor Paul H Rabinowitz , Edward W Stredulinsky
    • Untertitel Locally Minimal Solutions
    • Gewicht 468g
    • Herausgeber Springer Basel AG
    • Anzahl Seiten 208
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470