Families of Automorphic Forms

CHF 71.80
Auf Lager
SKU
64LA6D23EPC
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

This text gives a systematic treatment of real analytic automorphic forms on the upper half plane for general confinite discrete subgroups. It introduces the main ideas then offers many examples that clarify the general theory and results developed therefrom.


Automorphic forms on the upper half plane have been studied for a long time. Most attention has gone to the holomorphic automorphic forms, with numerous applications to number theory. Maass, [34], started a systematic study of real analytic automorphic forms. He extended Hecke's relation between automorphic forms and Dirichlet series to real analytic automorphic forms. The names Selberg and Roelcke are connected to the spectral theory of real analytic automorphic forms, see, e. g. , [50], [51]. This culminates in the trace formula of Selberg, see, e. g. , Hejhal, [21]. Automorphicformsarefunctionsontheupperhalfplanewithaspecialtra- formation behavior under a discontinuous group of non-euclidean motions in the upper half plane. One may ask how automorphic forms change if one perturbs this group of motions. This question is discussed by, e. g. , Hejhal, [22], and Phillips and Sarnak, [46]. Hejhal also discusses the e?ect of variation of the multiplier s- tem (a function on the discontinuous group that occurs in the description of the transformation behavior of automorphic forms). In [5][7] I considered variation of automorphic forms for the full modular group under perturbation of the m- tiplier system. A method based on ideas of Colin de Verdi` ere, [11], [12], gave the meromorphic continuation of Eisenstein and Poincar´ e series as functions of the eigenvalue and the multiplier system jointly. The present study arose from a plan to extend these results to much more general groups (discrete co?nite subgroups of SL (R)).

New material so far mostly available in articles Includes supplementary material: sn.pub/extras

Zusammenfassung

From reviews:

"It is made abundantly clear that this viewpoint, of families of automorphic functions depending on varying eigenvalue and multiplier systems, is both deep and fruitful." - MathSciNet


Inhalt
Modular introduction.- Modular introduction.- General theory.- Automorphic forms on the universal covering group.- Discrete subgroups.- Automorphic forms.- Poincaré series.- Selfadjoint extension of the Casimir operator.- Families of automorphic forms.- Transformation and truncation.- Pseudo Casimir operator.- Meromorphic continuation of Poincaré series.- Poincaré families along vertical lines.- Singularities of Poincaré families.- Examples.- Automorphic forms for the modular group.- Automorphic forms for the theta group.- Automorphic forms for the commutator subgroup.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783034603355
    • Sprache Englisch
    • Auflage 1., st ed. 1994. 2nd printing 2009 23.11.2009
    • Größe H240mm x B19mm x T155mm
    • Jahr 2009
    • EAN 9783034603355
    • Format Kartonierter Einband
    • ISBN 978-3-0346-0335-5
    • Titel Families of Automorphic Forms
    • Autor Roelof W. Bruggeman
    • Untertitel Modern Birkhäuser Classics
    • Gewicht 575g
    • Herausgeber Springer Basel AG
    • Anzahl Seiten 318
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470