Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Federated Learning Systems
Details
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors' control of their critical data.
Presents advances in federated learning Shows how federated learning can transform next-generation artificial intelligence applications Proposes solutions to address key federated learning challenges
Inhalt
Federated Learning Research: Trends and Bibliometric Analysis.- A Review of Privacy-preserving Federated Learning for the Internet-of-Things.- Dierentially Private Federated Learning: Algorithm, Analysis and Optimization.- Advancements of federated learning towards privacy preservation: from federated learning to split learning.- PySyft: A Library for Easy Federated Learning.- Federated Learning Systems for Healthcare: Perspective and Recent Progress.- Towards Blockchain-Based Fair and Trustworthy Federated Learning Systems.- An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030706067
- Genre Technology Encyclopedias
- Auflage 1st edition 2021
- Editor Mohamed Medhat Gaber, Muhammad Habib Ur Rehman
- Lesemotiv Verstehen
- Anzahl Seiten 212
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T12mm
- Jahr 2022
- EAN 9783030706067
- Format Kartonierter Einband
- ISBN 3030706060
- Veröffentlichung 12.06.2022
- Titel Federated Learning Systems
- Untertitel Towards Next-Generation AI
- Gewicht 330g
- Sprache Englisch