Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Feynman-Kac Formulae
Details
This book contains a systematic and self-contained treatment of Feynman-Kac path measures, their genealogical and interacting particle interpretations, and their applications to a variety of problems arising in statistical physics, biology, and advanced engineering sciences. With practical and easy to use references as well as deeper and modern mathematics studies, the book will be of use to advanced undergraduates as well as to engineers and researchers in pure and applied mathematics, statistics, physics, biology, and operation research.
Takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviations principles for strong topologies on path-distribution spaces
Inhalt
1 Introduction.- 1.1 On the Origins of Feynman-Kac and Particle Models.- 1.2 Notation and Conventions.- 1.3 Feynman-Kac Path Models.- 1.4 Motivating Examples.- 1.5 Interacting Particle Systems.- 1.6 Sequential Monte Carlo Methodology.- 1.7 Particle Interpretations.- 1.8 A Contents Guide for the Reader.- 2 Feynman-Kac Formulae.- 2.1 Introduction.- 2.2 An Introduction to Markov Chains.- 2.4 Structural Stability Properties.- 2.5 Distribution Flows Models.- 2.6 Feynman-Kac Models in Random Media.- 2.7 Feynman-Kac Semigroups.- 3 Genealogical and Interacting Particle Models.- 3.1 Introduction.- 3.2 Interacting Particle Interpretations.- 3.3 Particle models with Degenerate Potential.- 3.4 Historical and Genealogical Tree Models.- 3.5 Particle Approximation Measures.- 4 Stability of Feynman-Kac Semigroups.- 4.1 Introduction.- 4.2 Contraction Properties of Markov Kernels.- 4.3 Contraction Properties of Feynman-Kac Semigroups.- 4.4 Updated Feynman-Kac Models.- 5 Invariant Measures and Related Topics.- 5.1 Introduction.- 5.2 Existence and Uniqueness.- 5.3 Invariant Measures and Feynman-Kac Modeling.- 5.4 Feynman-Kac and Metropolis-Hastings Models.- 5.5 Feynman-Kac-Metropolis Models.- 6 Annealing Properties.- 6.1 Introduction.- 6.2 Feynman-Kac-Metropolis Models.- 6.3 Feynman-Kac Trapping Models.- 7 Asymptotic Behavior.- 7.1 Introduction.- 7.2 Some Preliminaries.- 7.3 Inequalities for Independent Random Variables.- 7.4 Strong Law of Large Numbers.- 8 Propagation of Chaos.- 8.1 Introduction.- 8.2 Some Preliminaries.- 8.3 Outline of Results.- 8.4 Weak Propagation of Chaos.- 8.5 Relative Entropy Estimates.- 8.6 A Combinatorial Transport Equation.- 8.7 Asymptotic Properties of Boltzmann-Gibbs Distributions.- 8.8 Feynman-Kac Semigroups.- 9 Central Limit Theorems.- 9.1 Introduction.- 9.2Some Preliminaries.- 9.3 Some Local Fluctuation Results.- 9.4 Particle Density Profiles.- 9.5 A Berry-Esseen Type Theorem.- 9.6 A Donsker Type Theorem.- 9.7 Path-Space Models.- 9.8 Covariance Functions.- 10 Large-Deviation Principles.- 10.1 Introduction.- 10.2 Some Preliminary Results.- 10.3 Crámer's Method.- 10.4 Laplace-Varadhan's Integral Techniques.- 10.5 Dawson-Gärtner Projective Limits Techniques.- 10.6 Sanov's Theorem.- 10.7 Path-Space and Interacting Particle Models.- 10.8 Particle Density Profile Models.- 11 Feynman-Kac and Interacting Particle Recipes.- 11.1 Introduction.- 11.2 Interacting Metropolis Models.- 11.3 An Overview of some General Principles.- 11.4 Descendant and Ancestral Genealogies.- 11.5 Conditional Explorations.- 11.6 State-Space Enlargements and Path-Particle Models.- 11.7 Conditional Excursion Particle Models.- 11.8 Branching Selection Variants.- 11.9 Exercises.- 12 Applications.- 12.1 Introduction.- 12.2 Random Excursion Models.- 12.3 Change of Reference Measures.- 12.4 Spectral Analysis of Feynman-Kac-Schrödinger Semigroups.- 12.5 Directed Polymers Simulation.- 12.6 Filtering/Smoothing and Path estimation.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441919021
- Sprache Englisch
- Auflage Softcover reprint of the original 1st ed. 2004
- Größe H235mm x B155mm
- Jahr 2011
- EAN 9781441919021
- Format Kartonierter Einband
- ISBN 978-1-4419-1902-1
- Veröffentlichung 12.12.2011
- Titel Feynman-Kac Formulae
- Autor Pierre Del Moral
- Untertitel Genealogical and Interacting Particle Systems with Applications
- Gewicht 872g
- Herausgeber Springer New York
- Anzahl Seiten 556
- Lesemotiv Verstehen
- Genre Mathematik