Fiber Bundle

CHF 56.75
Auf Lager
SKU
RSLEE5H6ECC
Stock 1 Verfügbar
Geliefert zwischen Do., 25.09.2025 und Fr., 26.09.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematics, and particularly topology, a fiber bundle (or fibre bundle) is intuitively a space E which locally "looks" like a product space B × F, but globally may have a different topological structure. Specifically, the similarity between the fiber bundle E and a product space B × F is defined using a continuous surjective map pi : E to B that in small regions of E behaves just like a projection from corresponding regions of B × F to B. The map , called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the trivial case, E is just B × F, and the map is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles, that is, bundles twisted in the large, include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles such as the tangent bundle of a manifold and more general vector bundles play an important role in differential geometry and differential topology, as do principal bundles.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130252212
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Genre Mathematik
    • Größe H220mm x B150mm x T8mm
    • Jahr 2009
    • EAN 9786130252212
    • Format Kartonierter Einband
    • ISBN 978-613-0-25221-2
    • Titel Fiber Bundle
    • Untertitel Mathematics, Topology, Product topology, Continuous function (topology), Möbius strip, Klein bottle, Covering space, Tangent bundle, Manifold, Vector bundle, Differential geometry
    • Gewicht 213g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 132

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.