Filling Radius
CHF 37.35
Auf Lager
SKU
2FGDG1CMTEP
Geliefert zwischen Mo., 20.10.2025 und Di., 21.10.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner''s torus inequality and Pu''s inequality for the real projective plane, and creating Systolic geometry in its modern form.The filling radius of the Riemannian circle of length 2 , i.e. the unit circle with the induced Riemannian distance function, equals /3, i.e. a sixth of its length.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131238055
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H3mm x B220mm x T150mm
- EAN 9786131238055
- Format Fachbuch
- Titel Filling Radius
- Gewicht 102g
- Herausgeber Betascript Publishing
- Anzahl Seiten 64
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung