Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Filtering and smoothing of financial data using Wavelets
Details
As temporal data are of growing importance hence require to support new trends for filtering and smoothing. The main goal of this work is to explore new smoothing techniques like wavelet filters in place of traditional moving averages and regression methods, etc for temporal data for further decision making processes like forecasting, similarities search and clustering. Temporal applications are increasingly popular methods for studying a wide range of databases including sensor, weather, stock exchange, seismic and atomic, etc. Time series, a common form of temporal data, are mostly contaminated with noise and outliers. The direct operation and analysis on these types of raw data, may easily lead to wrong decisions. The selection of appropriate smoothing techniques is the pivotal point to reach to the correct conclusions. In this work, the main task has been to select the best possible smoothing technique for selection of features of time series to perform various tasks.
Autorentext
Dr. M. Afzal Saleemi completed his Ph.D. in Computer Science in 2007 from University of Karachi. He is working as head of Computer Science Department National University of Sciences and Technology, NUST (PMA). His areas of interests are Wavelets, Data and Knowledge Engineering, Data mining, Database Management System, and Soft computing.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 209g
- Untertitel New trends in filtering and smoothing
- Autor Afzal Saleemi , Akhter Raza
- Titel Filtering and smoothing of financial data using Wavelets
- Veröffentlichung 23.01.2012
- ISBN 384734109X
- Format Kartonierter Einband
- EAN 9783847341093
- Jahr 2012
- Größe H220mm x B150mm x T8mm
- Anzahl Seiten 128
- Auflage Aufl.
- GTIN 09783847341093