Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
Details
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics.
The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.
Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.
Comprehensive overview of the state of the art Presents contributions that report successful applications Reviewed by experts
Inhalt
Part III Applications: Elliptic and Parabolic Problems.- Part IV: Applications: Hyperbolic Problems.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319382883
- Lesemotiv Verstehen
- Genre Maths
- Auflage Softcover reprint of the original 1st edition 2014
- Editor Jürgen Fuhrmann, Christian Rohde, Mario Ohlberger
- Anzahl Seiten 540
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T29mm
- Jahr 2016
- EAN 9783319382883
- Format Kartonierter Einband
- ISBN 3319382888
- Veröffentlichung 17.09.2016
- Titel Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
- Untertitel FVCA 7, Berlin, June 2014
- Gewicht 809g
- Sprache Englisch