Fisher Information Metric

CHF 49.65
Auf Lager
SKU
TNQRK6MC4P4
Stock 1 Verfügbar
Geliefert zwischen Fr., 16.01.2026 und Mo., 19.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. In mathematics, more specifically in measure theory, a measure on a set is a systematic way to assign to each suitable subset a number, intuitively interpreted as the size of the subset. In this sense, a measure is a generalization of the concepts of length, area, volume, et cetera. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area and volume of Euclidean geometry to suitable subsets of Rn, n=1,2,3,.... For instance, the Lebesgue measure of [0,1] in the real numbers is its length in the everyday sense of the word, specifically 1.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131239045
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131239045
    • Format Fachbuch
    • Titel Fisher Information Metric
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470