Fixed Points of Set Valued Maps

CHF 57.55
Auf Lager
SKU
BCHQE7RKL6K
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The study of the existence of fixed points is a lively and fascinating field of research and has many applications in engineering, physics, chemistry, biology, economics, computer science and etc. Formulating concrete problems abstractly in the framework of fixed point theory has the advantage of distilling the essentials and their relationships, of allowing a uniform treatment of differing practical problems and of enabling the use of deep and powerful mathematical methods, without which the problems could not be solved. In this monograph we aim to study hybrid of two classical theorems; Banach's fixed point theorem and Tarski's fixed point theorem. We focus on the existence of fixed point in partially ordered metric spaces for set valued mappings.

Autorentext

Ismat Beg is a Professor at Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences. He is teaching courses on Functional Analysis and Fuzzy Set Theory and its Applications to graduate and post-graduate students in mathematics, economics and computer science. Asma Rashid Butt did her Ph.D. in 2010 with ismat Beg.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783843366526
    • Sprache Englisch
    • Größe H220mm x B150mm x T8mm
    • Jahr 2010
    • EAN 9783843366526
    • Format Kartonierter Einband
    • ISBN 3843366527
    • Veröffentlichung 26.10.2010
    • Titel Fixed Points of Set Valued Maps
    • Autor Ismat Beg , Asma Rashid Butt
    • Untertitel Fixed Points of Set Valued Maps
    • Gewicht 179g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 108
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470