Forecasting Economic Time Series using Locally Stationary Processes

CHF 62.40
Auf Lager
SKU
OT5URJ61JKE
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future.

Autorentext

Tina Loll holds a Diploma in Civil Engineering from the University of Duisburg-Essen and a Diploma in Business Administration and Engineering from the University of Bochum. From 2007 to 2011 she worked as a research assistant at the Institute of Statistics and Econometrics of the University of Hamburg and received a Doctor of Economics.


Inhalt
Contents: Forecasting Locally stationary processes Timevarying autoregression Semiparametric estimation Model selection Sieve estimator Futures prices Dow Jones index Gauss.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783631621875
    • Auflage 1. Auflage
    • Sprache Englisch
    • Features Dissertationsschrift
    • Genre Volkswirtschaft
    • Größe H216mm x B153mm x T11mm
    • Jahr 2012
    • EAN 9783631621875
    • Format Fester Einband
    • ISBN 3631621876
    • Veröffentlichung 19.01.2012
    • Titel Forecasting Economic Time Series using Locally Stationary Processes
    • Autor Tina Loll
    • Untertitel A New Approach with Applications
    • Gewicht 303g
    • Herausgeber Peter Lang
    • Anzahl Seiten 140
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470