Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
FPGA implementation of Hopfield Neural Network
Details
This work was to establish whether it was possible to achieve a reasonable speedup by implementing FPGA based Hopfield neural networks for some simple constraint satisfaction problems. The results are significant our initial implementation using standard Xilinx FPGAs yielded 2-3 orders of magnitude speedup over the Sun Blade 2000 workstation comes with 1.2-GHz version of the 64-bit UltraSPARC III Cu processor. The main problem with the work to date is that the problems are both unrealistically small and simplistic. That is the constraints on the N-Queen problem are simpler than those found in many real world scheduling applications. Thus, it is not clear whether we will be able to optimize the neuron structure for more complex problems since the weights matrix may not contain as many zero elements. Thus a new method for speed improvement of Hopfield neural networks for solving constraint satisfaction problems using Field Programmable Gate Arrays (FPGAs) was proposed and implemented.
Autorentext
Avvaru Srinivasulu was born in Andhrapradesh, India, in 1985. He received the B.Tech degree in Electronics and Control Engineering in 2006 and M.Tech degree in Instrumentation and Control Systems in 2008 from Jawaharlal Nehru Technological University, Hyderabad.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783848435456
- Anzahl Seiten 76
- Genre Wärme- und Energietechnik
- Auflage Aufl.
- Herausgeber LAP Lambert Academic Publishing
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783848435456
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8484-3545-6
- Titel FPGA implementation of Hopfield Neural Network
- Autor Avvaru Srinivasulu
- Untertitel for constraint satisfaction problems
- Sprache Englisch