Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
From Shortest Paths to Reinforcement Learning
Details
Dynamic programming (DP) has a relevant history as a powerful and flexible optimization principle, but has a bad reputation as a computationally impractical tool. This book fills a gap between the statement of DP principles and their actual software implementation. Using MATLAB throughout, this tutorial gently gets the reader acquainted with DP and its potential applications, offering the possibility of actual experimentation and hands-on experience. The book assumes basic familiarity with probability and optimization, and is suitable to both practitioners and graduate students in engineering, applied mathematics, management, finance and economics.
Covers both, classical numerical analysis approaches and more recent learning strategies based on Monte Carlo simulation Includes well-documented MATLAB code snapshots to illustrate algorithms and applications in detail Illustrate subtle modeling issues in detail Illustrates a wide set of applications Includes supplementary material: sn.pub/extras
Autorentext
Paolo Brandimarte is full professor at the Department of Mathematical Sciences of Politecnico di Torino, Italy, where he teaches courses on Business Analytics, Risk Management, and Operations Research. He is the author of more than ten books on the application of optimization and simulation methods to problems ranging from quantitative finance to production and supply chain management.
Inhalt
The dynamic programming principle.- Implementing dynamic programming.- Modeling for dynamic programming.- Numerical dynamic programming for discrete states.- Approximate dynamic programming and reinforcement learning for discrete states.- Numerical dynamic programming for continuous states.- Approximate dynamic programming and reinforcement learning for continuous states.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030618698
- Lesemotiv Verstehen
- Genre Business Encyclopedias
- Sprache Englisch
- Anzahl Seiten 220
- Herausgeber Springer
- Größe H235mm x B155mm x T13mm
- Jahr 2022
- EAN 9783030618698
- Format Kartonierter Einband
- ISBN 3030618692
- Veröffentlichung 12.01.2022
- Titel From Shortest Paths to Reinforcement Learning
- Autor Paolo Brandimarte
- Untertitel A MATLAB-Based Tutorial on Dynamic Programming
- Gewicht 341g