Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Functional Analysis
Details
This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text.
Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course.
Provides an elementary treatment of the subject that establishes the foundation for further study Enriches understanding of the theory with numerous examples and counterexamples Includes many exercises for readers to practice techniques Dissects proofs of difficult results into small steps to improve understanding Includes supplementary material: sn.pub/extras
Autorentext
Sergei Ovchinnikov is Professor Emeritus of Mathematics at San Francisco State University. His other Universitext books are Measure, Integral, Derivative: a Course on Lebesgue's Theory (2013) and Graphs and Cubes (2011).
Inhalt
Preface.- 1. Preliminaries.- 2. Metric Spaces.- 3. Special Spaces.- 4. Normed Spaces.- 5. Linear Functionals.- 6. Fundamental Theorems.- 7. Hilbert Spaces.- A. Hilbert Spaces L2(J).- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319915111
- Sprache Englisch
- Auflage 1st edition 2018
- Größe H235mm x B155mm x T13mm
- Jahr 2018
- EAN 9783319915111
- Format Kartonierter Einband
- ISBN 3319915118
- Veröffentlichung 29.06.2018
- Titel Functional Analysis
- Autor Sergei Ovchinnikov
- Untertitel An Introductory Course
- Gewicht 341g
- Herausgeber Springer International Publishing
- Anzahl Seiten 220
- Lesemotiv Verstehen
- Genre Mathematik