Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Fundamentals of Fourier Analysis
Details
This self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Variables. It provides sufficient content for a two course sequence in Fourier Analysis or Harmonic Analysis at the graduate level. In true pedagogical spirit, each chapter presents a valuable selection of exercises with targeted hints that will assist the reader in the development of research skills. Proofs are presented with care and attention to detail. Examples are provided to enrich understanding and improve overall comprehension of the material. Carefully drawn illustrations build intuition in the proofs. Appendices contain background material for those that need to review key concepts. Compared with the author's other GTM volumes (Classical Fourier Analysis and Modern Fourier Analysis), this text offers a more classroom-friendly approach as it contains shorter sections, more refined proofs, and a wider range of exercises. Topics include the Fourier Transform, Multipliers, Singular Integrals, LittlewoodPaley Theory, BMO, Hardy Spaces, and Weighted Estimates, and can be easily covered within two semesters.
Engages students with a broad selection of exercises Offers a broad selection of examples to enrich understanding Illustrates important concepts to help build intuition
Autorentext
Loukas Grafakos is the Mahala and Rose Houchins Distinguished Professor of Mathematics at the University of Missouri at Columbia. He is author of 3 Graduate Texts in Mathematics: Classical Fourier Analysis (GTM 249), Modern Fourier Analysis (GTM 250), and Fundamentals of Fourier Analysis (GTM 302). His research is in Harmonic Analysis.
Klappentext
1 Introductory Material.- 2 Fourier Transforms, Tempered Distributions, Approximate Identities.- 3 Singular Integrals.- 4 Vector-Valued Singular Integrals and Littlewood-Paley Theory.- 5 Fractional Integrability or Differentiability and Multiplier Theorems.- 6 Bounded Mean Oscillation.- 7 Hardy Spaces.- 8 Weighted Inequalities.- Historical Notes.- Appendix A Orthogonal Matrices.- Appendix B Subharmonic Functions.- Appendix C Poisson Kernel on the Unit Strip.- Appendix D Density for Subadditive Operators.- Appendix E Transposes and Adjoints of Linear Operators.- Appendix F Faa di Bruno Formula.- Appendix G Besicovitch Covering Lemma.- Glossary.- References.- Index.
Inhalt
1 Introductory Material.- 2 Fourier Transforms, Tempered Distributions, Approximate Identities.- 3 Singular Integrals.- 4 Vector-Valued Singular Integrals and LittlewoodPaley Theory.- 5 Fractional Integrability or Differentiability and Multiplier Theorems.- 6 Bounded Mean Oscillation.- 7 Hardy Spaces.- 8 Weighted Inequalities.- Historical Notes.- Appendix A Orthogonal Matrices.- Appendix B Subharmonic Functions.- Appendix C Poisson Kernel on the Unit Strip.- Appendix D Density for Subadditive Operators.- Appendix E Transposes and Adjoints of Linear Operators.- Appendix F Faa di Bruno Formula.- Appendix G Besicovitch Covering Lemma.- Glossary.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031564994
- Lesemotiv Verstehen
- Genre Maths
- Anzahl Seiten 424
- Herausgeber Springer
- Größe H241mm x B160mm x T29mm
- Jahr 2024
- EAN 9783031564994
- Format Fester Einband
- ISBN 3031564995
- Veröffentlichung 22.07.2024
- Titel Fundamentals of Fourier Analysis
- Autor Loukas Grafakos
- Untertitel Graduate Texts in Mathematics 302
- Gewicht 799g
- Sprache Englisch