Fundamentals of Predictive Text Mining

CHF 71.65
Auf Lager
SKU
G2QEP5M1PLC
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Presents a comprehensive, practical and easy-to-read introduction to text mining Updated and expanded with new content on deep learning, graph models, mining social media, and errors and pitfalls in big data evaluation Includes chapter summaries, classroom-tested exercises, and several descriptive case studies Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material

Autorentext

Dr. Sholom M. Weiss is a Professor Emeritus of Computer Science at Rutgers University, a Fellow of the Association for the Advancement of Artificial Intelligence, and co-founder of AI Data-Miner LLC, New York.

Dr. Nitin Indurkhya is faculty member at the School of Computer Science and Engineering, University of New South Wales, Australia, and the Institute of Statistical Education, Arlington, VA, USA. He is also a co-founder of AI Data-Miner LLC, New York.

Dr. Tong Zhang is a Professor of Statistics and Biostatistics at Rutgers University.


Inhalt

Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Data Sources for Prediction: Databases, Hybrid Data and the Web.- Case Studies.- Emerging Directions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447171133
    • Genre Information Technology
    • Auflage Softcover reprint of the original 2nd edition 2015
    • Lesemotiv Verstehen
    • Anzahl Seiten 256
    • Größe H235mm x B155mm x T15mm
    • Jahr 2016
    • EAN 9781447171133
    • Format Kartonierter Einband
    • ISBN 1447171136
    • Veröffentlichung 29.10.2016
    • Titel Fundamentals of Predictive Text Mining
    • Autor Sholom M. Weiss , Tong Zhang , Nitin Indurkhya
    • Untertitel Texts in Computer Science
    • Gewicht 394g
    • Herausgeber Springer London
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470