Fuzzy Probabilities

CHF 113.60
Auf Lager
SKU
KN7DRTET05Q
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 04.11.2025 und Mi., 05.11.2025

Details

In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.

New method of dealing with imprecise probabilities, most of which not published before Includes supplementary material: sn.pub/extras

Inhalt
1 Introduction.- 1.1 Introduction.- 1.2 References.- 2 Fuzzy Sets.- 2.1 Introduction.- 2.2 Fuzzy Sets.- 2.3 Fuzzy Arithmetic.- 2.4 Fuzzy Functions.- 2.5 Finding the Minimum of a Fuzzy Number.- 2.6 Ordering Fuzzy Numbers.- 2.7 Fuzzy Probabilities.- 2.8 Fuzzy Numbers from Confidence Intervals.- 2.9 Computing Fuzzy Probabilities.- 2.10 Figures.- 2.11 References.- 3 Fuzzy Probability Theory.- 3.1 Introduction.- 3.2 Fuzzy Probability.- 3.3 Fuzzy Conditional Probability.- 3.4 Fuzzy Independence.- 3.5 Fuzzy Bayes' Formula.- 3.6 Applications.- 3.7 References.- 4 Discrete Fuzzy Random Variables.- 4.1 Introduction.- 4.2 Fuzzy Binomial.- 4.3 Fuzzy Poisson.- 4.4 Applications.- 4.5 References.- 5 Fuzzy Queuing Theory.- 5.1 Introduction.- 5.2 Regular, Finite, Markov Chains.- 5.3 Fuzzy Queuing Theory.- 5.4 Applications.- 5.5 References.- 6 Fuzzy Markov Chains.- 6.1 Introduction.- 6.2 Regular Markov Chains.- 6.3 Absorbing Markov Chains.- 6.4 Application: Decision Model.- 6.5 References.- 7 Fuzzy Decisions Under Risk.- 7.1 Introduction.- 7.2 Without Data.- 7.3 With Data.- 7.4 References.- 8 Continuous Fuzzy Random Variables.- 8.1 Introduction.- 8.2 Fuzzy Uniform.- 8.3 Fuzzy Normal.- 8.4 Fuzzy Negative Exponential.- 8.5 Applications.- 8.6 References.- 9 Fuzzy Inventory Control.- 9.1 Introduction.- 9.2 Single Period Model.- 9.3 Multiple Periods.- 9.4 References.- 10 Joint Fuzzy Probability Distributions.- 10.1 Introduction.- 10.2 Continuous Case.- 10.3 References.- 11 Applications of Joint Distributions.- 11.1 Introduction.- 11.2 Political Polls.- 11.3 Fuzzy Reliability Theory.- 11.4 References.- 12 Functions of a Fuzzy Random Variable.- 12.1 Introduction.- 12.2 Discrete Fuzzy Random Variables.- 12.3 Continuous Fuzzy Random Variables.- 13 Functions of Fuzzy Random Variables.- 13.1Introduction.- 13.2 One-to-One Transformation.- 13.3 Other Transformations.- 14 Law of Large Numbers.- 15 Sums of Fuzzy Random Variables.- 15.1 Introduction.- 15.2 Sums.- 16 Conclusions and Future Research.- 16.1 Introduction.- 16.2 Summary.- 16.3 Research Agenda.- 16.4 Conclusions.- List of Figures.- List of Tables.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642867880
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2003
    • Größe H235mm x B155mm x T11mm
    • Jahr 2012
    • EAN 9783642867880
    • Format Kartonierter Einband
    • ISBN 364286788X
    • Veröffentlichung 01.06.2012
    • Titel Fuzzy Probabilities
    • Autor James J. Buckley
    • Untertitel New Approach and Applications
    • Gewicht 283g
    • Herausgeber Physica
    • Anzahl Seiten 180
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.