Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Galaxy Modelling using Bayesian Statistics
Details
Modelling disc galaxies is a notoriously difficult problem, partly because of the complexity of astrophysical effects that impact galaxy structure, and partly because the available data are often inadequate to properly constrain the model parameters. This book brings a Bayesian/Markov chain Monte Carlo approach to the problem, using the isolated dwarf spiral galaxy NGC 6503 as a test case. A comprehensive set of observations are available for fitting with sophisticated dynamical models. The joint posterior probability function for the model parameters is obtained, and hence constraints on such important properties as the galaxy mass and mass-to-light ratio, halo density profile, and structural parameters. This work should be useful to anyone interested in the properties of galaxies, as well as anyone with an interest in Bayesian techniques.
Autorentext
David Puglielli, Ph.D. in theoretical astrophysics, Queen''s University (Kingston) 2009, B.S. in Mathematics and Physics from McGill University (Montreal) 2002. Main research interests include galaxy dynamics, evolution and formation, numerical simulations, Bayesian techniques and their applications to astrophysical problems.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 221g
- Untertitel A Bayesian/Markov chain Monte Carlo Approach to Modelling NGC 6503
- Autor David Puglielli
- Titel Galaxy Modelling using Bayesian Statistics
- Veröffentlichung 02.02.2010
- ISBN 3838318331
- Format Kartonierter Einband
- EAN 9783838318332
- Jahr 2010
- Größe H220mm x B150mm x T9mm
- Anzahl Seiten 136
- GTIN 09783838318332