Galois Theory, Coverings, and Riemann Surfaces

CHF 71.85
Auf Lager
SKU
LO5ARDO607I
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book offers a self-contained exposition of classical Galois theory and its applications to of solvability of algebraic equations, connects the theory with classification of coverings over a topological space, introduces topological Galois theory and more.

The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.

All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.


Classical Galois theory and classification of coverings are explained from scratch Gentle introduction to the cutting edge of research Written by one of the founders of topological Galois theory Includes supplementary material: sn.pub/extras

Autorentext
Askold Khovanskii is a Professor of Mathematics at the University of Toronto, and a principal researcher at the RAS Institute for Systems Analysis (Moscow, Russia). He is a founder of Topological Galois Theory and the author of fundamental results in this area.

Inhalt
Chapter 1 Galois Theory: 1.1 Action of a Solvable Group and Representability by Radicals.- 1.2 Fixed Points under an Action of a Finite Group and Its Subgroups.- 1.3 Field Automorphisms and Relations between Elements in a Field.- 1.4 Action of a k-Solvable Group and Representability by k-Radicals.- 1.5 Galois Equations.- 1.6 Automorphisms Connected with a Galois Equation.- 1.7 The Fundamental Theorem of Galois Theory.- 1.8 A Criterion for Solvability of Equations by Radicals.- 1.9 A Criterion for Solvability of Equations by k-Radicals.- 1.10 Unsolvability of Complicated Equations by Solving Simpler Equations.- 1.11 Finite Fields.- Chapter 2 Coverings: 2.1 Coverings over Topological Spaces.- 2.2 Completion of Finite Coverings over Punctured Riemann Surfaces.- Chapter 3 Ramified Coverings and Galois Theory: 3.1 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions.- 3.2 Geometry of Galois Theory for Extensions of a Field of Meromorphic Functions.- References.- Index

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783662519561
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage Softcover reprint of the original 1st ed. 2013
    • Übersetzer Vladlen Timorin, Valentina Kiritchenko
    • Anzahl Seiten 81
    • Herausgeber Springer, Berlin
    • Größe H235mm x B155mm
    • Jahr 2016
    • EAN 9783662519561
    • Format Kartonierter Einband
    • ISBN 978-3-662-51956-1
    • Veröffentlichung 23.08.2016
    • Titel Galois Theory, Coverings, and Riemann Surfaces
    • Autor Askold Khovanskii
    • Gewicht 1591g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470