Gaussian and Non-Gaussian Linear Time Series and Random Fields

CHF 137.25
Auf Lager
SKU
NUA4BKLNKJJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This monograph will be of interest to researchers and graduate students in time series and probability.

Zusammenfassung

From the reviews:

SHORT BOOK REVIEWS

"...will make this book useful as a reference source to the more theoretical among time series specialists."

ZENTRALBLATT MATH

"This publication can be recommended to readers familiar with the basic concepts of time series who are interested in estimation problems in nonminimum phase processes."


Inhalt
1 Reversibility and Identifiability.- 1.1 Linear Sequences and the Gaussian Property.- 1.2 Reversibility.- 1.3 Identifiability.- 1.4 Minimum and Nonminimum Phase Sequences.- 2 Minimum Phase Estimation.- 2.1 The Minimum Phase Case and the Quasi-Gaussian Likelihood.- 2.2 Consistency.- 2.3 The Asymptotic Distribution.- 3 Homogeneous Gaussian Random Fields.- 3.1 Regular and Singular Fields.- 3.2 An Isometry.- 3.3 L-Fields and L-Markov Fields.- 4 Cumulants, Mixing and Estimation for Gaussian Fields.- 4.1 Moments and Cumulants.- 4.2 Higher Order Spectra.- 4.3 Some Simple Inequalities and Strong Mixing.- 4.4 Strong Mixing for Two-Sided Linear Processes.- 4.5 Mixing and a Central Limit Theorem for Random Fields.- 4.6 Estimation for Stationary Random Fields.- 4.7 Cumulants of Finite Fourier Transforms.- 4.8 Appendix: Two Inequalities.- 5 Prediction for Minimum and Nonminimum Phase Models.- 5.1 Introduction.- 5.2 A First Order Autoregressive Model.- 5.3 Nonminimum Phase Autoregressive Models.- 5.4 A Functional Equation.- 5.5 Entropy.- 5.6 Continuous Time Parameter Processes.- 6 The Fluctuation of the Quasi-Gaussian Likelihood.- 6.1 Initial Remarks.- 6.2 Derivation.- 6.3 The Limiting Process.- 7 Random Fields.- 7.1 Introduction.- 7.2 Markov Fields and Chains.- 7.3 Entropy and a Limit Theorem.- 7.4 Some Illustrations.- 8 Estimation for Possibly Nonminimum Phase Schemes.- 8.1 The Likelihood for Possibly Non-Gaussian Autoregressive Schemes.- 8.2 Asymptotic Normality.- 8.3 Preliminary Comments: Approximate Maximum Likelihood Estimates for Non-Gaussian Nonminimum Phase ARMA Sequences.- 8.4 The Likelihood Function.- 8.5 The Covariance Matrix.- 8.6 Solution of the Approximate Likelihood Equations.- 8.7 Cumulants and Estimation for Autoregressive Schemes.- 8.8 Superefficiency.- Bibliographic Notes.- References.- Notation.- Author Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781461270676
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st ed. 2000
    • Größe H235mm x B155mm x T15mm
    • Jahr 2012
    • EAN 9781461270676
    • Format Kartonierter Einband
    • ISBN 1461270677
    • Veröffentlichung 27.09.2012
    • Titel Gaussian and Non-Gaussian Linear Time Series and Random Fields
    • Autor Murray Rosenblatt
    • Untertitel Springer Series in Statistics
    • Gewicht 406g
    • Herausgeber Springer
    • Anzahl Seiten 264
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470