Generalized Inverses and Products of Special Classes of Matrices

CHF 61.80
Auf Lager
SKU
LJABKFVUP46
Stock 1 Verfügbar
Geliefert zwischen Mo., 22.09.2025 und Di., 23.09.2025

Details

Matrices play a vital role in modeling because of the rich techniques available in the domain of matrices. In this aspect, role of the inverse of a matrix is very important and is the fundamental for solution techniques. For a given matrix, the Moore-Penrose inverse is the unique matrix satisfying four fundamental matrix equations. The concept of unitary matrices for non-singular category has been extended as partial isometry to rectangular matrices, via the tool of Moore-Penrose inverses. This beginning has subsequently extended the concept of partial isometry to star-dagger matrices, which coincides with normal matrices in the case of non-singular matrices. The class of hermitian positive semi-definite matrices is a subclass of hermitian matrices, which in turn a subclass of normal matrices. The class of normal matrices includes skew-hermitian, hermitian and unitary matrices. Also another generalization of hermitian matrices is the range-hermitian matrices called the class of EP matrices.

Autorentext

T.TAMIZH CHELVAM is Professor of Mathematics at Manonmaniam Sundaranar University, India. As a result of his intensive research since 1987, he has authored 55 refereed papers on Algebra & Graph Theory. I.RANI is Assistant Professor of Mathematics at Anna University of Technology Tirunelveli. She was awarded PhD(2010) in Algebraic Graph Theory.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel Hermitian Positive Semi-definite and Range Hermitian Matrices
    • Autor T. Tamizh Chelvam , C. Rajian
    • Titel Generalized Inverses and Products of Special Classes of Matrices
    • Veröffentlichung 22.02.2011
    • ISBN 3844308784
    • Format Kartonierter Einband
    • EAN 9783844308785
    • Jahr 2011
    • Größe H220mm x B150mm x T6mm
    • Gewicht 167g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 100
    • GTIN 09783844308785

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.