Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Generative Adversarial Learning: Architectures and Applications
Details
This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs' theoretical developments and their applications.
Presents high-quality research articles addressing theoretical work for improving the learning process Provides a gentle introduction to GANs and related domains Describes most well-known GAN architectures and applications domains
Inhalt
An Introduction to Generative Adversarial Learning: Architectures and Applications.- Generative Adversarial Networks: A Survey on Training, Variants, and Applications.- Fair Data Generation and Machine Learning through Generative Adversarial Networks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030913892
- Genre Technology Encyclopedias
- Editor Roozbeh Razavi-Far, Ariel Ruiz-Garcia, Vasile Palade, Juergen Schmidhuber
- Lesemotiv Verstehen
- Anzahl Seiten 372
- Herausgeber Springer
- Größe H241mm x B160mm x T26mm
- Jahr 2022
- EAN 9783030913892
- Format Fester Einband
- ISBN 3030913899
- Veröffentlichung 08.02.2022
- Titel Generative Adversarial Learning: Architectures and Applications
- Untertitel Intelligent Systems Reference Library 217
- Gewicht 723g
- Sprache Englisch