Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Genetic algorithm for haplotyping and block partitioning
Details
A new algorithm for performing simultaneous haplotype resolution and block partitioning is proposed. The algorithm is based on genetic algorithm approach and the parsimonious principle. The multiloculs LD measure (Normalized Entropy Difference) is used as a block identification criterion. The proposed algorithm incorporates missing data is a part of the model and allows blocks of arbitrary length. In addition, the algorithm provides scores for the block boundaries which represent measures of strength of the boundaries at specific positions. The results show that the proposed genetic algorithm provides the accuracy of haplotype decomposition within the range of the same indicators shown by the other algorithms. The proposed algorithm is also used in a new population clustering algorithm, which extracts from the given genotype sample two clusters with substantially different block structures and finds haplotype resolution and block partitioning for each cluster.
Autorentext
Nadezhda Sazonova received her Masters degrees in Mathematics, Statistics and Economics from West Virginia University in 2002, received her PhD degree in Computer Science from the same university in 2007. Her main research intersts include statistical pattern recognition with applications in bioinformatics, biomedicine and biometrics.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639237849
- Sprache Englisch
- Größe H220mm x B150mm x T8mm
- Jahr 2010
- EAN 9783639237849
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-23784-9
- Titel Genetic algorithm for haplotyping and block partitioning
- Autor Nadezhda Sazonova
- Untertitel A parsimony-based approach
- Gewicht 213g
- Herausgeber VDM Verlag
- Anzahl Seiten 132
- Genre Biologie