Genetic Programming Theory and Practice XVII

CHF 216.60
Auf Lager
SKU
COJ732T6GV0
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year's edition, the topics covered include many of the most important issues and research questions in the eld, such as: opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efcient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms.The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.


Provides contributions describing cutting-edge work on the theory and applications of genetic programming (GP) Offers large-scale, real-world applications (big data) of GP to a variety of problem domains, including commercial and scientific applications as well as financial and insurance problems Explores controlled semantics, lexicase and other selection methods, crossover techniques, diversity analysis and understanding of convergence tendencies

Inhalt

  1. Characterizing the Effects of Random Subsampling on Lexicase Selection.- 2. It is Time for New Perspectives on How to Fight Bloatin GP.- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm.- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics?.- 5. Symbolic Regression by Exhaustive Search Reducing the Search Space using Syntactical Constraints and Efcient Semantic Structure Deduplication.- 6. Temporal Memory Sharing in Visual Reinforcement Learning.- 7. The Evolution of Representations in Genetic Programming Trees.- 8. How Competitive is Genetic Programming in Business Data Science Applications?.- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming.- 10. Evolutionary Computation and AI Safety.- 11. Genetic Programming Symbolic Regression.- 12. Hands-on Articial Evolution through Brain Programming.- 13. Comparison of Linear Genome Representations For Software Synthesis.- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation.- 15. New Pathways in Coevolutionary Computation.- 16. 2019 Evolutionary Algorithms Review.- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model.- 18. Modelling Genetic Programming as a Simple Sampling Algorithm.- 19. An Evolutionary System for Better Automatic Software Repair.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030399603
    • Genre Information Technology
    • Auflage 1st edition 2020
    • Editor Wolfgang Banzhaf, Erik Goodman, Bill Worzel, Leonardo Trujillo, Leigh Sheneman
    • Lesemotiv Verstehen
    • Anzahl Seiten 436
    • Größe H235mm x B155mm x T24mm
    • Jahr 2021
    • EAN 9783030399603
    • Format Kartonierter Einband
    • ISBN 3030399605
    • Veröffentlichung 08.05.2021
    • Titel Genetic Programming Theory and Practice XVII
    • Untertitel Genetic and Evolutionary Computation
    • Gewicht 657g
    • Herausgeber Springer International Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470