Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Geometric Applications of Principal Component Analysis
Details
Most of the applications of Principal Component Analysis (PCA) are non-geometric in their nature. However, there are also a few purely geometric applications. The focus of this book are the geometric properties of the PCA in the context of PCA bounding boxes and reflective symmetry. A frequently used heuristic for computing a bounding box of a set of points is based on PCA. Here, the quality of the PCA bounding boxes is investigated. Bounds on the worst case ratio of the volume of the PCA bounding box and the volume of the minimum volume bounding box are presented. Also, the impact of the theoretical results on applications of several PCA variants in practice are studied. Symmetry detection is an important problem with many applications in pattern recognition, computer vision and computational geometry. In this book, we use a relation between the perfect reflective symmetry and the principal components of shapes to compute the planes of symmetry of perfect and approximate reflective symmetric point sets.
Autorentext
Dr. Dimitrov obtained his PhD from Free University Berlin as a member of the Theoretical Computer Science Group at the Department of Mathematics and Computer Science. His main areas of interests are Computational Geometry and Graph Theory.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften
- Gewicht 238g
- Untertitel Quality of PCA Bounding Boxes and Detecting Symmetry
- Autor Darko Dimitrov
- Titel Geometric Applications of Principal Component Analysis
- Veröffentlichung 10.08.2012
- ISBN 3838134338
- Format Kartonierter Einband
- EAN 9783838134338
- Jahr 2012
- Größe H220mm x B150mm x T10mm
- Anzahl Seiten 148
- Auflage Aufl.
- GTIN 09783838134338