Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Geometric Measure Theory and Real Analysis
Details
In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
Covers very recent developments, partially unpublished at the time of the school Covers the most exciting developments in this research area
Inhalt
Vladimir I. Bogachev: Sobolev classes on infinite-dimensional spaces.- Roberto Monti: Isoperimetric problem and minimal surfaces in the Heisenberg group.- Emanuele Spadaro: Regularity of higher codimension area minimizing integral currents.- Davide Vittone: The regularity problem for sub-Riemannian geodesics.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09788876425226
- Editor Luigi Ambrosio
- Sprache Englisch
- Auflage 2014
- Größe H235mm x B155mm x T14mm
- Jahr 2015
- EAN 9788876425226
- Format Kartonierter Einband
- ISBN 8876425225
- Veröffentlichung 13.01.2015
- Titel Geometric Measure Theory and Real Analysis
- Untertitel Publications of the Scuola Normale Superiore 17 - CRM Series
- Gewicht 371g
- Herausgeber Scuola Normale Superiore
- Anzahl Seiten 240
- Lesemotiv Verstehen
- Genre Mathematik