Grammar-Based Feature Generation for Time-Series Prediction

CHF 71.95
Auf Lager
SKU
FP9FPN6G8FI
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.

First book presenting the framework for context-free grammar-based feature generation Equips readers to predict time-series prediction using machine learning techniques Includes case studies that illustrate the performance of different machine learning and model based approaches on financial, electrical and foreign exchange client trade volume time-series data Includes supplementary material: sn.pub/extras

Inhalt

Introduction.- Feature Selection.- Grammatical Evolution.- Grammar Based Feature Generation.- Application of Grammar Framework to Time-series Prediction.- Case Studies.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789812874108
    • Auflage 2015
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T7mm
    • Jahr 2015
    • EAN 9789812874108
    • Format Kartonierter Einband
    • ISBN 9812874100
    • Veröffentlichung 17.03.2015
    • Titel Grammar-Based Feature Generation for Time-Series Prediction
    • Autor Philip H. W. Leong , Anthony Mihirana De Silva
    • Untertitel SpringerBriefs in Applied Sciences and Technology - SpringerBriefs in Computatio
    • Gewicht 184g
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 112

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470