Graph Classes based on Interval Structures

CHF 100.75
Auf Lager
SKU
A5E3N348JVF
Stock 1 Verfügbar
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025

Details

Interval structures arise naturally in many applications, as in genetics, molecular biology, resource allocation, and scheduling, among others. Such structures are often modeled with graphs, such as interval and tolerance graphs, which have been widely studied. In this book we mainly investigate these classes of graphs, as well as a scheduling problem. We present solutions to some open problems, along with some new representation models that enable the design of new efficient algorithms. In the context of interval graphs, we present the first polynomial algorithm for the longest path problem, whose complexity status was an open question. Furthermore, we introduce two matrix representations for both interval and proper interval graphs, which can be used to derive efficient algorithms. In the context of tolerance graphs, we present the first non-trivial intersection model, given by three-dimensional parallelepipeds, which enables the design of efficient algorithms for some NP-hard optimization problems. Furthermore, we prove that both recognition problems for tolerance and bounded tolerance graphs are NP-complete, thereby settling a long standing open question since 1982.

Autorentext

George Mertzios, born in Greece (1983), has studied AppliedMathematics and Informatics at the National Technical Univ. ofAthens and the Technische Univ. München. In 2009 he received hisPh.D. on Computer Science at the RWTH Aachen University. Duringhis school years he received the Gold Medal at the 2nd JuniorBalkan Mathematical Olympiad (1998).

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 262g
    • Untertitel Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models
    • Autor George B. Mertzios
    • Titel Graph Classes based on Interval Structures
    • Veröffentlichung 12.10.2015
    • ISBN 3838111958
    • Format Kartonierter Einband
    • EAN 9783838111957
    • Jahr 2015
    • Größe H220mm x B150mm x T11mm
    • Herausgeber Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
    • Anzahl Seiten 164
    • GTIN 09783838111957

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.