Graph Representation Learning

CHF 74.75
Auf Lager
SKU
E97E4G3DV4K
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.

This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphsa nascent but quickly growing subset of graph representation learning.



Autorentext
William L. Hamilton is an Assistant Professor of Computer Science at McGill University and a Canada CIFAR Chair in AI. His research focuses on graph representation learning as well as applications in computational social science and biology. In recent years, he has published more than 20 papers on graph representation learning at top-tier venues across machine learning and network science, as well as co-organized several large workshops and tutorials on the topic. Williams work has been recognized by several awards, including the 2018 Arthur L. Samuel Thesis Award for the best doctoral thesis in the Computer Science department at Stanford University and the 2017 Cozzarelli Best Paper Award from the Proceedings of the National Academy of Sciences.


Inhalt
Preface.- Acknowledgments.- Introduction.- Background and Traditional Approaches.- Neighborhood Reconstruction Methods.- Multi-Relational Data and Knowledge Graphs.- The Graph Neural Network Model.- Graph Neural Networks in Practice.- Theoretical Motivations.- Traditional Graph Generation Approaches.- Deep Generative Models.- Conclusion.- Bibliography.- Author's Biography .

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031004605
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 160
    • Größe H235mm x B191mm x T9mm
    • Jahr 2020
    • EAN 9783031004605
    • Format Kartonierter Einband
    • ISBN 3031004604
    • Veröffentlichung 16.09.2020
    • Titel Graph Representation Learning
    • Autor William L. Hamilton
    • Untertitel Synthesis Lectures on Artificial Intelligence and Machine Learning
    • Gewicht 312g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470