Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Graphical Data Analysis with R
Details
This book focuses on why one draws graphics to display data and which graphics to draw (and uses R to do so). Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. All the
See How Graphics Reveal Information
Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA.
Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Autorentext
Antony Unwin is a professor of computer-oriented statistics and data analysis at the University of Augsburg. He is a fellow of the American Statistical Society, co-author of Graphics of Large Datasets, and co-editor of the Handbook of Data Visualization. His research focuses on data visualisation, especially in interactive graphics. His research group has developed several pieces of interactive graphics software and written packages for R.
Klappentext
See How Graphics Reveal Information
Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA.
Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Inhalt
Setting the Scene. Brief Review of the Literature and Background Materials. Examining Continuous Variables. Displaying Categorical Data. Looking for Structure: Dependency Relationships and Associations. Investigating Multivariate Continuous Data. Studying Multivariate Categorical Data. Getting an Overview. Graphics and Data Quality: How Good Are the Data?. Comparisons, Comparisons, Comparisons. Graphics for Time Series. Ensemble Graphics and Case Studies. Some Notes on Graphics with R. Summary. References. Indices.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781032477312
- Genre Non-Fiction Books on Psychology
- Sprache Englisch
- Anzahl Seiten 310
- Herausgeber Taylor & Francis
- Gewicht 620g
- Größe H234mm x B156mm
- Jahr 2023
- EAN 9781032477312
- Format Kartonierter Einband
- ISBN 978-1-03-247731-2
- Veröffentlichung 21.01.2023
- Titel Graphical Data Analysis with R
- Autor Unwin Antony