Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Gunn Diode
Details
A Gunn diode, also known as a transferred electron device (TED), is a form of diode used in high-frequency electronics. It is somewhat unusual in that it consists only of N-doped semiconductor material, whereas most diodes consist of both P and N-doped regions. In the Gunn diode, three regions exist: two of them are heavily N-doped on each terminal, with a thin layer of lightly doped material in between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. Conduction will take place as in any conductive material with current being proportional to the applied voltage. Eventually, at higher field values, the conductive properties of the middle layer will be altered, increasing its resistivity and reducing the gradient across it, preventing further conduction and current actually starts to fall down. In practice, this means a Gunn diode has a region of negative differential resistance. The negative differential resistance, combined with the timing properties of the intermediate layer, allows construction of an RF relaxation oscillator simply by applying a suitable direct current through the device.
Klappentext
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. A Gunn diode, also known as a transferred electron device (TED), is a form of diode used in high-frequency electronics. It is somewhat unusual in that it consists only of N-doped semiconductor material, whereas most diodes consist of both P and N-doped regions. In the Gunn diode, three regions exist: two of them are heavily N-doped on each terminal, with a thin layer of lightly doped material in between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. Conduction will take place as in any conductive material with current being proportional to the applied voltage. Eventually, at higher field values, the conductive properties of the middle layer will be altered, increasing its resistivity and reducing the gradient across it, preventing further conduction and current actually starts to fall down. In practice, this means a Gunn diode has a region of negative differential resistance. The negative differential resistance, combined with the timing properties of the intermediate layer, allows construction of an RF relaxation oscillator simply by applying a suitable direct current through the device.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130759766
- Anzahl Seiten 116
- Genre Wärme- und Energietechnik
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Herausgeber Alphascript Publishing
- Gewicht 181g
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130759766
- Format Fachbuch
- ISBN 978-613-0-75976-6
- Titel Gunn Diode
- Sprache Englisch