Handbook of Numerical Methods for Hyperbolic Problems: Volume 17

CHF 261.55
Auf Lager
SKU
GF85UDSRMLM
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations.

This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.


Autorentext
Rémi Abgrall is a professor at Universität Zürich Professor Chi-Wang Shu is a professor at Brown University, RI, USA

Klappentext
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.


Inhalt

General Introduction R. Abgrall and C.-W. Shu
Introduction to the Theory of Hyperbolic Conservation Laws C.M. Dafermos
The Riemann Problem: Solvers and Numerical Fluxes E.F. Toro
Classical Finite Volume Methods T. Sonar
Sharpening Methods for Finite Volume Schemes B. Després, S. Kokh and F. Lagoutière
ENO and WENO Schemes Y.-T. Zhang and C.-W. Shu
Stability Properties of the ENO Method U.S. Fjordholm
Stability, Error Estimate and Limiters of Discontinuous Galerkin Methods J. Qiu and Q. Zhang
HDG Methods for Hyperbolic Problems B. Cockburn, N.C. Nguyen and J. Peraire
Spectral Volume and Spectral Difference Methods Z.J. Wang, Y. Liu, C. Lacor and J. Azevedo
High-Order Flux Reconstruction Schemes F.D. Witherden, P.E. Vincent and A. Jameson
Linear Stabilization for First-Order PDEs A. Ern and J.-L. Guermond
Least-Squares Methods for Hyperbolic Problems P. Bochev and M. Gunzburger
Staggered and Co-Located Finite Volume Schemes for Lagrangian

Hydrodynamics R. Loubère, P.-H. Maire and B. Rebourcet
High Order Mass Conservative Semi-Lagrangian Methods for Transport Problems J.-M. Qiu
Front Tracking Methods D. She, R. Kaufman, H. Lim, J. Melvin, A. Hsu and J. Glimm
Moretti's Shock-Fitting Methods on Structured and Unstructured Meshes A. Bonfiglioli, R. Paciorri, F. Nasuti and M. Onofri
Spectral Methods for Hyperbolic Problems J.S. Hesthaven
Entropy Stable Schemes E. Tadmor
Entropy Stable Summation-By-Parts Formulations for Compressible Computational Fluid Dynamics M.H. Carpenter, T.C. Fisher, E.J. Nielsen, M. Parsani, M. Svärd and N. Yamaleev
Central Schemes: A Powerful Black-Box Solver for Nonlinear Hyperbolic PDEs A. Kurganov
Time Discretization Techniques S. Gottlieb and D.I. Ketcheson
The Fast Sweeping Method for Stationary Hamilton-Jacobi Equations H. Zhao
Numerical Methods for Hamilton Jacobi Type Equations M. Falcone and R. Ferretti

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780444637895
    • Genre Maths
    • Editor Abgrall Remi, Shu Chi-Wang, Du Qiang, Glowinski Roland, Michael Hintermüller, Endre Süli
    • Anzahl Seiten 666
    • Herausgeber North Holland
    • Größe H229mm x B152mm x T40mm
    • Jahr 2016
    • EAN 9780444637895
    • Format Fester Einband
    • ISBN 978-0-444-63789-5
    • Veröffentlichung 23.11.2016
    • Titel Handbook of Numerical Methods for Hyperbolic Problems: Volume 17
    • Autor Remi (Universitat Zurich, Switzerland) Sh Abgrall
    • Untertitel Basic and Fundamental Issues
    • Gewicht 1160g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470