Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces

CHF 92.10
Auf Lager
SKU
L593DIU47BN
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.

Problems of the sort considered in the present monograph profoundly affect the nature of the results in many other adjacent areas of mathematics. Includes supplementary material: sn.pub/extras

Klappentext

Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.


Inhalt
Introduction. - Geometry of Quasi-Metric Spaces.- Analysis on Spaces of Homogeneous Type.- Maximal Theory of Hardy Spaces.- Atomic Theory of Hardy Spaces.- Molecular and Ionic Theory of Hardy Spaces.- Further Results.- Boundedness of Linear Operators Defined on Hp(X).- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319181318
    • Sprache Englisch
    • Größe H235mm x B155mm x T27mm
    • Jahr 2015
    • EAN 9783319181318
    • Format Kartonierter Einband
    • ISBN 3319181319
    • Veröffentlichung 25.06.2015
    • Titel Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
    • Autor Ryan Alvarado , Marius Mitrea
    • Untertitel A Sharp Theory
    • Gewicht 744g
    • Herausgeber Springer
    • Anzahl Seiten 496
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470