Head and Neck Tumor Segmentation

CHF 73.55
Auf Lager
SKU
7E5IJN9J8DR
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 pandemic. The 2 full and 8 short papers presented together with an overview paper in this volume were carefully reviewed and selected form numerous submissions. This challenge aims to evaluate and compare the current state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 204 delineated PET/CT images was made available for training as well as 53 PET/CT images for testing. Various deep learning methods were developed by the participants with excellent results.


Inhalt
Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT.- Two-stage approach for segmenting gross tumor volume in head and neck cancer with CT and PET imaging.- The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel 'Squeeze & Excitation' Blocks.- Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images.- Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network.- Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT images.- Combining CNN and Hybrid Active Contours for Head and Neck Tumor Segmentation in CT and PET images.- Oropharyngeal Tumour Segmentation using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge.- Patch-based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions.- Tumor Segmentation in Patients with Head and Neck Cancers using Deep Learning based-on Multi-modality PET/CT Images.- GAN-based Bi-modal Segmentation using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030671938
    • Auflage 1st edition 2021
    • Editor Vincent Andrearczyk, Adrien Depeursinge, Valentin Oreiller
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T7mm
    • Jahr 2021
    • EAN 9783030671938
    • Format Kartonierter Einband
    • ISBN 3030671933
    • Veröffentlichung 13.01.2021
    • Titel Head and Neck Tumor Segmentation
    • Untertitel First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
    • Gewicht 195g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 120
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470