Hierarchical Neural Network Structures for Phoneme Recognition

CHF 135.15
Auf Lager
SKU
8BTA21IUMAC
Stock 1 Verfügbar
Geliefert zwischen Mi., 12.11.2025 und Do., 13.11.2025

Details

The subject of this study is the role of hierarchical structures, based on neural networks, in identifying phonemes in automated speech recognition systems. It shows how the artificial neural network paradigm can simplify the analysis of spoken language.


In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are mainly evaluated within the phoneme recognition task under the Hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) paradigm. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron (MLP). Additionally, the output of the first level is used as an input for the second level. This system can be substantially speeded up by removing the redundant information contained at the output of the first level.

Simplifies the analysis in spoken language dialogue systems Investigates hierarchical structures based on neural networks for automatic speech recognition Written for academic and industrial researchers in speech recognition

Inhalt
Background in Speech Recognition.- Phoneme Recognition Task.- Hierarchical Approach and Downsampling Schemes.- Extending the Hierarchical Scheme: Inter and Intra Phonetic Information.- Theoretical framework for phoneme recognition analysis.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642432101
    • Genre Elektrotechnik
    • Auflage 2013
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 152
    • Größe H235mm x B155mm x T9mm
    • Jahr 2014
    • EAN 9783642432101
    • Format Kartonierter Einband
    • ISBN 3642432107
    • Veröffentlichung 09.11.2014
    • Titel Hierarchical Neural Network Structures for Phoneme Recognition
    • Autor Daniel Vasquez , Wolfgang Minker , Rainer Gruhn
    • Untertitel Signals and Communication Technology
    • Gewicht 242g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470