High-Dimensional Covariance Matrix Estimation

CHF 99.30
Auf Lager
SKU
5J9EOR60MDB
Stock 1 Verfügbar
Geliefert zwischen Fr., 14.11.2025 und Mo., 17.11.2025

Details

This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.

Presents random matrix theory and covariance matrix estimation under high-dimensional asymptotics Demonstrates the deficiencies of the standard statistical tools when applied in high dimensions Encourages practitioners to use the new techniques when dealing with big data problems

Autorentext

Aygul Zagidullina received her Ph.D. in Quantitative Economics and Finance from the University of Konstanz, Germany, with a specialization in the areas of financial econometrics and statistical modeling. Her research interests include estimation of high-dimensional covariance matrices, machine learning, factor models and neural networks.


Inhalt

Foreword.- 1 Introduction.- 2 Traditional Estimators and Standard Asymptotics.- 3 Finite Sample Performance of Traditional Estimators.- 4 Traditional Estimators and High-Dimensional Asymptotics.- 5 Summary and Outlook.- Appendices.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030800642
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2021
    • Anzahl Seiten 132
    • Herausgeber Springer
    • Größe H235mm x B155mm x T8mm
    • Jahr 2021
    • EAN 9783030800642
    • Format Kartonierter Einband
    • ISBN 3030800644
    • Veröffentlichung 30.10.2021
    • Titel High-Dimensional Covariance Matrix Estimation
    • Autor Aygul Zagidullina
    • Untertitel An Introduction to Random Matrix Theory
    • Gewicht 213g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470