HQFTs and Quantum Groups

CHF 74.40
Auf Lager
SKU
1PRI7R4GEKR
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025

Details

The thesis is divided into two parts one for dimension 2 and the other for dimension 3. Part one of the thesis generalizes the denition of an n-dimensional HQFT in terms of a monoidal functor from a rigid symmetric monoidal category XCobn to any monoidal category A. In particular, 2-dimensional HQFTs with target K(G,1) taking values in A are generated from any Turaev G-crossed system in A and vice-versa. This is the generalization of Turaev's theory into a purely categorical set-up. Part two of the thesis generalizes the concept of a group-coalgebra, Hopf group-coalgebra, crossed Hopf group-coalgebra and quasitriangular Hopf group-coalgebra over a group scheme. Quantum double of a crossed Hopf group-scheme coalgebra is constructed in the ane case and conjectured for non-ane case. We can construct 3-dimensional HQFTs from modular crossed G-categories. The category of representations of a quantum double of a crossed Hopf group-coalgebra is a ribbon(quasitriangular) crossed group-category. Hence generates 3-dimensional HQFTs under certain conditions if the category becomes modular. However, systematic _nding of modular crossed G-categories is largely open.

Autorentext

Neha Gupta is doing M. Tech. (Computer Science and Engineering) from The NorthCap University, Gurugram. She received her MCA degree from YMCA Institute of Engineering, Faridabad in 2007.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 233g
    • Untertitel Homotopy Quantum Field Theory (HQFT) in dimensions two and three and Quantum Groups over group-schemes
    • Autor Neha Gupta
    • Titel HQFTs and Quantum Groups
    • Veröffentlichung 05.04.2016
    • ISBN 3847338579
    • Format Kartonierter Einband
    • EAN 9783847338574
    • Jahr 2016
    • Größe H220mm x B150mm x T10mm
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 144
    • Auflage Aufl.
    • GTIN 09783847338574

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.